3.19.92 \(\int \frac {(d+e x)^2}{(a d e+(c d^2+a e^2) x+c d e x^2)^3} \, dx\) [1892]

Optimal. Leaf size=107 \[ -\frac {1}{2 \left (c d^2-a e^2\right ) (a e+c d x)^2}+\frac {e}{\left (c d^2-a e^2\right )^2 (a e+c d x)}+\frac {e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^3}-\frac {e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^3} \]

[Out]

-1/2/(-a*e^2+c*d^2)/(c*d*x+a*e)^2+e/(-a*e^2+c*d^2)^2/(c*d*x+a*e)+e^2*ln(c*d*x+a*e)/(-a*e^2+c*d^2)^3-e^2*ln(e*x
+d)/(-a*e^2+c*d^2)^3

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {640, 46} \begin {gather*} \frac {e}{\left (c d^2-a e^2\right )^2 (a e+c d x)}-\frac {1}{2 \left (c d^2-a e^2\right ) (a e+c d x)^2}+\frac {e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^3}-\frac {e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

-1/2*1/((c*d^2 - a*e^2)*(a*e + c*d*x)^2) + e/((c*d^2 - a*e^2)^2*(a*e + c*d*x)) + (e^2*Log[a*e + c*d*x])/(c*d^2
 - a*e^2)^3 - (e^2*Log[d + e*x])/(c*d^2 - a*e^2)^3

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3} \, dx &=\int \frac {1}{(a e+c d x)^3 (d+e x)} \, dx\\ &=\int \left (\frac {c d}{\left (c d^2-a e^2\right ) (a e+c d x)^3}-\frac {c d e}{\left (c d^2-a e^2\right )^2 (a e+c d x)^2}+\frac {c d e^2}{\left (c d^2-a e^2\right )^3 (a e+c d x)}-\frac {e^3}{\left (c d^2-a e^2\right )^3 (d+e x)}\right ) \, dx\\ &=-\frac {1}{2 \left (c d^2-a e^2\right ) (a e+c d x)^2}+\frac {e}{\left (c d^2-a e^2\right )^2 (a e+c d x)}+\frac {e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^3}-\frac {e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 83, normalized size = 0.78 \begin {gather*} -\frac {\frac {\left (c d^2-a e^2\right ) \left (-3 a e^2+c d (d-2 e x)\right )}{(a e+c d x)^2}-2 e^2 \log (a e+c d x)+2 e^2 \log (d+e x)}{2 \left (c d^2-a e^2\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

-1/2*(((c*d^2 - a*e^2)*(-3*a*e^2 + c*d*(d - 2*e*x)))/(a*e + c*d*x)^2 - 2*e^2*Log[a*e + c*d*x] + 2*e^2*Log[d +
e*x])/(c*d^2 - a*e^2)^3

________________________________________________________________________________________

Maple [A]
time = 0.81, size = 106, normalized size = 0.99

method result size
default \(\frac {e^{2} \ln \left (e x +d \right )}{\left (e^{2} a -c \,d^{2}\right )^{3}}+\frac {1}{2 \left (e^{2} a -c \,d^{2}\right ) \left (c d x +a e \right )^{2}}+\frac {e}{\left (e^{2} a -c \,d^{2}\right )^{2} \left (c d x +a e \right )}-\frac {e^{2} \ln \left (c d x +a e \right )}{\left (e^{2} a -c \,d^{2}\right )^{3}}\) \(106\)
risch \(\frac {\frac {c d e x}{a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}}+\frac {3 e^{2} a -c \,d^{2}}{2 a^{2} e^{4}-4 a c \,d^{2} e^{2}+2 c^{2} d^{4}}}{\left (c d x +a e \right )^{2}}+\frac {e^{2} \ln \left (-e x -d \right )}{e^{6} a^{3}-3 e^{4} d^{2} a^{2} c +3 d^{4} e^{2} c^{2} a -d^{6} c^{3}}-\frac {e^{2} \ln \left (c d x +a e \right )}{e^{6} a^{3}-3 e^{4} d^{2} a^{2} c +3 d^{4} e^{2} c^{2} a -d^{6} c^{3}}\) \(199\)
norman \(\frac {\frac {c d \,e^{3} x^{3}}{a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}}+\frac {3 a d \,e^{3} x}{a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}}+\frac {3 d^{2} e^{2} c^{2} a -d^{4} c^{3}}{2 c^{2} \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right )}+\frac {\left (3 c^{2} d^{2} a \,e^{6}+3 c^{3} d^{4} e^{4}\right ) x^{2}}{2 e^{2} d^{2} c^{2} \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right )}}{\left (c d x +a e \right )^{2} \left (e x +d \right )^{2}}+\frac {e^{2} \ln \left (e x +d \right )}{e^{6} a^{3}-3 e^{4} d^{2} a^{2} c +3 d^{4} e^{2} c^{2} a -d^{6} c^{3}}-\frac {e^{2} \ln \left (c d x +a e \right )}{e^{6} a^{3}-3 e^{4} d^{2} a^{2} c +3 d^{4} e^{2} c^{2} a -d^{6} c^{3}}\) \(318\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x,method=_RETURNVERBOSE)

[Out]

e^2/(a*e^2-c*d^2)^3*ln(e*x+d)+1/2/(a*e^2-c*d^2)/(c*d*x+a*e)^2+e/(a*e^2-c*d^2)^2/(c*d*x+a*e)-e^2/(a*e^2-c*d^2)^
3*ln(c*d*x+a*e)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 226 vs. \(2 (104) = 208\).
time = 0.29, size = 226, normalized size = 2.11 \begin {gather*} \frac {e^{2} \log \left (c d x + a e\right )}{c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}} - \frac {e^{2} \log \left (x e + d\right )}{c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}} + \frac {2 \, c d x e - c d^{2} + 3 \, a e^{2}}{2 \, {\left (a^{2} c^{2} d^{4} e^{2} - 2 \, a^{3} c d^{2} e^{4} + a^{4} e^{6} + {\left (c^{4} d^{6} - 2 \, a c^{3} d^{4} e^{2} + a^{2} c^{2} d^{2} e^{4}\right )} x^{2} + 2 \, {\left (a c^{3} d^{5} e - 2 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5}\right )} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="maxima")

[Out]

e^2*log(c*d*x + a*e)/(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6) - e^2*log(x*e + d)/(c^3*d^6 - 3*a
*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6) + 1/2*(2*c*d*x*e - c*d^2 + 3*a*e^2)/(a^2*c^2*d^4*e^2 - 2*a^3*c*d^2*e
^4 + a^4*e^6 + (c^4*d^6 - 2*a*c^3*d^4*e^2 + a^2*c^2*d^2*e^4)*x^2 + 2*(a*c^3*d^5*e - 2*a^2*c^2*d^3*e^3 + a^3*c*
d*e^5)*x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 275 vs. \(2 (104) = 208\).
time = 3.84, size = 275, normalized size = 2.57 \begin {gather*} \frac {2 \, c^{2} d^{3} x e - c^{2} d^{4} - 2 \, a c d x e^{3} + 4 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4} + 2 \, {\left (c^{2} d^{2} x^{2} e^{2} + 2 \, a c d x e^{3} + a^{2} e^{4}\right )} \log \left (c d x + a e\right ) - 2 \, {\left (c^{2} d^{2} x^{2} e^{2} + 2 \, a c d x e^{3} + a^{2} e^{4}\right )} \log \left (x e + d\right )}{2 \, {\left (c^{5} d^{8} x^{2} + 2 \, a c^{4} d^{7} x e - 6 \, a^{2} c^{3} d^{5} x e^{3} + 6 \, a^{3} c^{2} d^{3} x e^{5} - 2 \, a^{4} c d x e^{7} - a^{5} e^{8} - {\left (a^{3} c^{2} d^{2} x^{2} - 3 \, a^{4} c d^{2}\right )} e^{6} + 3 \, {\left (a^{2} c^{3} d^{4} x^{2} - a^{3} c^{2} d^{4}\right )} e^{4} - {\left (3 \, a c^{4} d^{6} x^{2} - a^{2} c^{3} d^{6}\right )} e^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="fricas")

[Out]

1/2*(2*c^2*d^3*x*e - c^2*d^4 - 2*a*c*d*x*e^3 + 4*a*c*d^2*e^2 - 3*a^2*e^4 + 2*(c^2*d^2*x^2*e^2 + 2*a*c*d*x*e^3
+ a^2*e^4)*log(c*d*x + a*e) - 2*(c^2*d^2*x^2*e^2 + 2*a*c*d*x*e^3 + a^2*e^4)*log(x*e + d))/(c^5*d^8*x^2 + 2*a*c
^4*d^7*x*e - 6*a^2*c^3*d^5*x*e^3 + 6*a^3*c^2*d^3*x*e^5 - 2*a^4*c*d*x*e^7 - a^5*e^8 - (a^3*c^2*d^2*x^2 - 3*a^4*
c*d^2)*e^6 + 3*(a^2*c^3*d^4*x^2 - a^3*c^2*d^4)*e^4 - (3*a*c^4*d^6*x^2 - a^2*c^3*d^6)*e^2)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 457 vs. \(2 (92) = 184\).
time = 0.66, size = 457, normalized size = 4.27 \begin {gather*} \frac {e^{2} \log {\left (x + \frac {- \frac {a^{4} e^{10}}{\left (a e^{2} - c d^{2}\right )^{3}} + \frac {4 a^{3} c d^{2} e^{8}}{\left (a e^{2} - c d^{2}\right )^{3}} - \frac {6 a^{2} c^{2} d^{4} e^{6}}{\left (a e^{2} - c d^{2}\right )^{3}} + \frac {4 a c^{3} d^{6} e^{4}}{\left (a e^{2} - c d^{2}\right )^{3}} + a e^{4} - \frac {c^{4} d^{8} e^{2}}{\left (a e^{2} - c d^{2}\right )^{3}} + c d^{2} e^{2}}{2 c d e^{3}} \right )}}{\left (a e^{2} - c d^{2}\right )^{3}} - \frac {e^{2} \log {\left (x + \frac {\frac {a^{4} e^{10}}{\left (a e^{2} - c d^{2}\right )^{3}} - \frac {4 a^{3} c d^{2} e^{8}}{\left (a e^{2} - c d^{2}\right )^{3}} + \frac {6 a^{2} c^{2} d^{4} e^{6}}{\left (a e^{2} - c d^{2}\right )^{3}} - \frac {4 a c^{3} d^{6} e^{4}}{\left (a e^{2} - c d^{2}\right )^{3}} + a e^{4} + \frac {c^{4} d^{8} e^{2}}{\left (a e^{2} - c d^{2}\right )^{3}} + c d^{2} e^{2}}{2 c d e^{3}} \right )}}{\left (a e^{2} - c d^{2}\right )^{3}} + \frac {3 a e^{2} - c d^{2} + 2 c d e x}{2 a^{4} e^{6} - 4 a^{3} c d^{2} e^{4} + 2 a^{2} c^{2} d^{4} e^{2} + x^{2} \cdot \left (2 a^{2} c^{2} d^{2} e^{4} - 4 a c^{3} d^{4} e^{2} + 2 c^{4} d^{6}\right ) + x \left (4 a^{3} c d e^{5} - 8 a^{2} c^{2} d^{3} e^{3} + 4 a c^{3} d^{5} e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**3,x)

[Out]

e**2*log(x + (-a**4*e**10/(a*e**2 - c*d**2)**3 + 4*a**3*c*d**2*e**8/(a*e**2 - c*d**2)**3 - 6*a**2*c**2*d**4*e*
*6/(a*e**2 - c*d**2)**3 + 4*a*c**3*d**6*e**4/(a*e**2 - c*d**2)**3 + a*e**4 - c**4*d**8*e**2/(a*e**2 - c*d**2)*
*3 + c*d**2*e**2)/(2*c*d*e**3))/(a*e**2 - c*d**2)**3 - e**2*log(x + (a**4*e**10/(a*e**2 - c*d**2)**3 - 4*a**3*
c*d**2*e**8/(a*e**2 - c*d**2)**3 + 6*a**2*c**2*d**4*e**6/(a*e**2 - c*d**2)**3 - 4*a*c**3*d**6*e**4/(a*e**2 - c
*d**2)**3 + a*e**4 + c**4*d**8*e**2/(a*e**2 - c*d**2)**3 + c*d**2*e**2)/(2*c*d*e**3))/(a*e**2 - c*d**2)**3 + (
3*a*e**2 - c*d**2 + 2*c*d*e*x)/(2*a**4*e**6 - 4*a**3*c*d**2*e**4 + 2*a**2*c**2*d**4*e**2 + x**2*(2*a**2*c**2*d
**2*e**4 - 4*a*c**3*d**4*e**2 + 2*c**4*d**6) + x*(4*a**3*c*d*e**5 - 8*a**2*c**2*d**3*e**3 + 4*a*c**3*d**5*e))

________________________________________________________________________________________

Giac [A]
time = 1.16, size = 183, normalized size = 1.71 \begin {gather*} \frac {c d e^{2} \log \left ({\left | c d x + a e \right |}\right )}{c^{4} d^{7} - 3 \, a c^{3} d^{5} e^{2} + 3 \, a^{2} c^{2} d^{3} e^{4} - a^{3} c d e^{6}} - \frac {e^{3} \log \left ({\left | x e + d \right |}\right )}{c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} + 3 \, a^{2} c d^{2} e^{5} - a^{3} e^{7}} - \frac {c^{2} d^{4} - 4 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4} - 2 \, {\left (c^{2} d^{3} e - a c d e^{3}\right )} x}{2 \, {\left (c d^{2} - a e^{2}\right )}^{3} {\left (c d x + a e\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="giac")

[Out]

c*d*e^2*log(abs(c*d*x + a*e))/(c^4*d^7 - 3*a*c^3*d^5*e^2 + 3*a^2*c^2*d^3*e^4 - a^3*c*d*e^6) - e^3*log(abs(x*e
+ d))/(c^3*d^6*e - 3*a*c^2*d^4*e^3 + 3*a^2*c*d^2*e^5 - a^3*e^7) - 1/2*(c^2*d^4 - 4*a*c*d^2*e^2 + 3*a^2*e^4 - 2
*(c^2*d^3*e - a*c*d*e^3)*x)/((c*d^2 - a*e^2)^3*(c*d*x + a*e)^2)

________________________________________________________________________________________

Mupad [B]
time = 0.69, size = 225, normalized size = 2.10 \begin {gather*} \frac {\frac {3\,a\,e^2-c\,d^2}{2\,\left (a^2\,e^4-2\,a\,c\,d^2\,e^2+c^2\,d^4\right )}+\frac {c\,d\,e\,x}{a^2\,e^4-2\,a\,c\,d^2\,e^2+c^2\,d^4}}{a^2\,e^2+2\,a\,c\,d\,e\,x+c^2\,d^2\,x^2}-\frac {2\,e^2\,\mathrm {atanh}\left (\frac {a^3\,e^6-a^2\,c\,d^2\,e^4-a\,c^2\,d^4\,e^2+c^3\,d^6}{{\left (a\,e^2-c\,d^2\right )}^3}+\frac {2\,c\,d\,e\,x\,\left (a^2\,e^4-2\,a\,c\,d^2\,e^2+c^2\,d^4\right )}{{\left (a\,e^2-c\,d^2\right )}^3}\right )}{{\left (a\,e^2-c\,d^2\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^3,x)

[Out]

((3*a*e^2 - c*d^2)/(2*(a^2*e^4 + c^2*d^4 - 2*a*c*d^2*e^2)) + (c*d*e*x)/(a^2*e^4 + c^2*d^4 - 2*a*c*d^2*e^2))/(a
^2*e^2 + c^2*d^2*x^2 + 2*a*c*d*e*x) - (2*e^2*atanh((a^3*e^6 + c^3*d^6 - a*c^2*d^4*e^2 - a^2*c*d^2*e^4)/(a*e^2
- c*d^2)^3 + (2*c*d*e*x*(a^2*e^4 + c^2*d^4 - 2*a*c*d^2*e^2))/(a*e^2 - c*d^2)^3))/(a*e^2 - c*d^2)^3

________________________________________________________________________________________